Optimal Coordination of Distance and Directional Overcurrent Relays Considering Different Network Topologies

Authors

Abstract:

Most studies in relay coordination have focused solely on coordination of overcurrent relays while distance relays are used as the main protection of transmission lines. Since, simultaneous coordination of these two types of relays can provide a better protection, in this paper, a new approach is proposed for simultaneous coordination of distance and directional overcurrent relays (D&DOCRs). Also, pursued by most of the previously published studies, the settings of D&DOCRs are usually determined based on a main network topology which may result in mis-coordination of relays when changes occur in the network topology. In the proposed method, in order to have a robust coordination, network topology changes are taken into account in the coordination problem. In the new formulation, coordination constraints for different network topologies are added to those of the main topology. A complex nonlinear optimization problem is derived to find the desirable relay settings. Then, the problem is solved using hybridized genetic algorithm (GA) with linear programming (LP) method (HGA). The proposed method is evaluated using the IEEE 14-bus test system. According to the results, a feasible and robust solution is obtained for D&DOCRs coordination while all constraints, which are due to different network topologies, are satisfied.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Considering Pilot Protection in the Optimal Coordination of Distance and Directional Overcurrent Relays

The aim of the relay coordination is that protection systems detect and isolate the faulted part as fast and selective as possible. On the other hand, in order to reduce the fault clearing time, distance protection relays are usually equipped with pilot protection schemes. Such schemes can be considered in the distance and directional overcurrent relays (D&DOCRs) coordination to achieve faster ...

full text

Efficient Dimensionality Reduction of Directional Overcurrent Relays Optimal Coordination Problem

Directional over current relays (DOCR) are commonly used in power system protection as a primary protection in distribution and sub-transmission electrical systems and as a secondary protection in transmission systems. Coordination of protective relays is necessary to obtain selective tripping. In this paper, an approach for efficiency reduction of DOCRs nonlinear optimum coordination (OC) is p...

full text

A Novel Objective Function for Directional Overcurrent Relays Coordination

Directional overcurrent relays (DOCRs) are widely used to protect power systems. For optimal coordination of DOCRs, several techniques have been proposed to solve this problem. A common way of optimal coordination of DOCRs is using evolutionary algorithms such as genetic algorithm (GA). In this paper, a novel strategy for DOCRs coordination is proposed. In the proposed strategy, a new objective...

full text

Directional Overcurrent Relays Coordination Problems in Distributed Generation Systems

This paper proposes a new approach to the distributed generation system protection coordination based on directional overcurrent protections with inverse-time characteristics. The key question of protection coordination is the determination of correct values of all inverse-time characteristics coefficients. The coefficients must be correctly chosen considering the sufficiently short tripping ti...

full text

Optimal Coordination of Directional Overcurrent Relays using Particle Swarm Optimization Technique

The main function of the protective devices in the power system is to detect and remove the selected faulty parts as fast as possible. Directional over current relays are commonly used for the protection of interconnected sub transmission systems, distribution systems, or as a secondary protection of transmission systems. For the systems having more than one source connected, that is meshed or ...

full text

Optimal Coordination of Directional Overcurrent Relays using Particle Swarm Optimization Technique

The main function of the protective devices in the power system is to detect and remove the selected faulty parts as fast as possible. Directional over current relays are commonly used for the protection of interconnected sub transmission systems, distribution systems, or as a secondary protection of transmission systems. For the systems having more than one source connected, that is meshed or ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 3

pages  231- 240

publication date 2015-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023